<u>Macromolecules</u>

Most macromolecules are polymers:

Carbohydrates (C,H,O) = polymer

Proteins (C,H,O,N) = polymer

Nucleic acids (C,H,O,N,P) = polymer

Lipids (C,H,O)

A polymer is a long molecule consisting of many similar or identical building blocks linked by covalent bonds.

A repeating units that serve as the building blocks of a polymer are small molecule called monomer

Polymerization reaction is a condensation reaction which 2 monomers are linked by a covalent bond.

1 molecule of water is produced.

This reaction may be called dehydration reaction.

-Polymer are disassembled by hydrolysis or breaking the covalent bond by water. (hydro = water, lysis = break)

-example = digestion

Carbohydrates

-polymer of monosaccharides

$$-C:H:O=1:2:1$$

-monosaccharides, disaccharides, polysaccharides

-monosaccharides =
$$(CH_2O)_n$$
 n > or = 3

- -aldoses
- -ketoses
- -D isomer glucose: C5 (the chiral carbon most distant from the carbonyl carbon, C1)

C4 of glucose and galactose = epimers

$$\begin{array}{c} H & O \\ H^{-2}C - OH \\ HO & C - OH \\ H & C - OH \\ \end{array} \longrightarrow \begin{array}{c} ^{6}CH_{2}OH \\ H & C - OH \\ OH & C - OH \\ H & OH \\ \end{array} \longrightarrow \begin{array}{c} ^{6}CH_{2}OH \\ H & C - OH \\ OH & C - OH \\ H & OH \\ \end{array} \longrightarrow \begin{array}{c} ^{6}CH_{2}OH \\ OH & C - OH \\ OH & C - OH \\ OH & OH \\ \end{array} \longrightarrow \begin{array}{c} ^{6}CH_{2}OH \\ OH & C - OH \\ OH & OH \\ OH & OH \\ OH & OH \\ \end{array}$$

(a) Linear and ring forms

(b) Abbreviated ring structure

7

Disaccharides = glycosidic linkage between 2 monosaccharides

(a) Dehydration synthesis of maltose

maltose = α (1-4) glycosidic linkage between 2 glucose molecules

(b) Dehydration synthesis of sucrose

sucrose = α (1-2) glycosidic linkage between glucose and fructose

lactose = β (1-4) glycosidic linkage between galactose and glucose

Polysaccharides: storage and structure

storage polysacchraides:

- -starch (in plant)
- -glycogen (in animal)

structure polysaccharides:

- -cellulose
- -chitin
- -bacterial cell wall

-starch: amylose and amylopectin amylose = D-glucose linked by a $\alpha(1-4)$ glycosidic linkage amylopectin = branched by a $\alpha(1-6)$ linkage every 12-25 glucose units

(b) Starch: 1-4 linkage of α glucose monomers

-glycogen -D-glucose linked by α (1-4) glycosidic linkage

-branched by α (1-6) glycosidic linkage at every 8-12 glucose units

Structural polysaccharides: cellulose $\beta(1-4)$ glycosidic linkage of D-glucose

The arrangement of cellulose in plant cell wall

-chitin in insect exoskeletons and crustacean shells

 $=\beta(1-4)$ glycosidic linakge of N-acetylglucosamine

Chitin from insect can be used to make a strong and flexible surgical thread that decomposes after the wound or incision heals.

-bacterial cell wall = $\beta(1-4)$ glycosidic linkage between N-acetyl glucosamine and N-acetylmuramic acid

(b) Bacterial cell wall polysaccharide

Functions of Carbohydrates:

- 1. An energy storage: plants convert light energy into monosaccharides and starch which animals can use as energy source.
- 2. Structure of organism: cellulose, chitin and bacterial cell wall.
- 3. Component of nucleic acid: ribose and deoxyribose.
- 4. Glycoprotein and glycolipid are composition of cell membrane or recognition molecule.

หน้าที่ของคาร์โบไฮเดรต

- 1.พลังงานสะสม พืชเก็บพลังงานจากแสงอาทิตย์ในรูปของน้ำตาลโมเลกุลเดี่ยว และแป้ง สัตว์เก็บพลังงานที่เหลือจาการเผาผลาญน้ำตาลในรูปของใกลโคเจน
- 2.เป็นโครงสร้างของสิ่งมีชีวิต (เซลลูโลส ใคติน ผนัง เซลล์ของแบคทีเรีย)
- 3.เป็นองค์ประกอบของกรดนิวคลีอิก น้ำตาลไรโบส และ ดีออกซีไรโบส
- 4.รวมกับโปรตีน หรือลิพิด เป็นใกลโคโปรตีน หรือใกลโค-ลิพิด ซึ่งเป็นเยื่อหุ้มเซลล์ และเป็นโมเลกุลที่ถูกจดจำ (recognition)โดยโปรตีนอื่นๆ